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A B S T R A C T  

In this paper we construct two families of non-trivial self-dual semi- 
simple Hopf algebras of dimension pq2 and investigate closely their (quasi) 
triangular structures. The paper contains also general results on finite- 
dimensional triangular Hopf algebras, unimodularity, semisimplicity and 
ribbon structures of finite~dimensional semisimple Hopf algebras. 

In troduct ion  

Let (A, R) be a triangular Hopf algebra. The category of A-modules in this 

case is very nice; it has a symmetry  which makes it similar to the category of 

vector spaces. Some well known examples of such Hopf algebras are Sweedler's 4- 

dimensional Hopf a lgebra , / /4 ,  which is neither commutative nor cocommutative,  

and the group algebra of a finite group G, which is cocommutative. Both H4 

and k[G] are also pointed. Tha t  is, they are generated by a filtration induced 

by the group of grouplikes, G(A) .  A natural  question that  arises is: Are all 
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finite-dimensional triangular Hopf algebras pointed? This would imply that in 

characteristic 0 all such semisimple Hopf algebras are actually group algebras. It 

is this question that motivated Section 2. The answer is negative in general, but 

we conjecture it is true when A is so-called minimal triangular. 

More generally, the connection between a Hopf algebra A and G(A) has been at 

the root of many natural questions. Kaplansky has conjectured that if dim A = p, 

p a prime, then A -- k[G(A)]. This conjecture was recently proved by Zhu [Z]. 

Motivated by this, Masuoka [M1, M2] has completely characterized semisimple 

A of dimension 2p, p2 and p3 via G(A). We venture further and construct in 

this paper two new families of non-trivial semisimple Hopf algebras of dimension 

pq2, where p and q are prime, via G(A). These Hopf algebras, which contain a 

unique pq-dimensional sub-Hopf algebra, are not pointed and they are neither 

commutative nor cocommutative. For q -- 2 they are even quasitriangular, and 

the members of one family are triangular for any p and q. 

The purpose of this paper is two-fold: to study various properties of finite- 

dimensional triangular Hopf algebras, and to construct new quantum groups via 

biproducts. 

The paper is organized as follows: 

In Section I we recall some background material needed for this paper. We also 

prove some general properties of finite-dimensional quasitriangular Hopf algebras 

(see 1.3.1-1.3.6), and of the subcategory of biproducts (see 1.2.1-1.2.4) needed 

for this paper. For example: 

THEOREM 1.3.5: Let (A, R) be a finite-dimensional semisimple quasitriangular 

Hopf algebra over a field k of characteristic 0 or p > (dim A) 2. Then (A, R) is 

ribbon. 

THEOREM 1.3.6: Let (A, R) be a finite-dimensional cosemisimple quasitriangular 

Hopf algebra over any field k. Then A is unimodular. 

In Section 2 we discuss properties of finite-dimensional triangular Hopf alge- 

bras, (A, R), such as: connections between A and A*, unimodularity and various 

connections between distinguished elements, and its effect on semisimplicity. For 

example: 

THEOREM 2.2: Let (A,R) be a finite-dimensional minimal triangular Hopf 

algebra over any field k. Then A and A *c°p are isomorphic as Hop[ algebras, 
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and G(A) is abelian. 

THEOREM 2.8: Let (A, R) be a finite-dimensional minimal triangular Hopf alge- 

bra over a field k of characteristic O. If  A is generated as an algebra by grouplikes 

and skew primitives, then k[G(A)] admits a minimal triangular structure, and 

moreover A = B x k[G(A)] is a biproduct. 

THEOREM 2.13: Let (A, R) be an odd-dimensional triangular Hopf algebra over 

a field k of characteristic O. Then A and A* are unimodular if  and only if they 

are semisimple. 

The above properties will enable us to easily decide whether certain Hopf 

algebras admit triangular structures. These criteria will be used in Section 3. 

In Section 3 we construct two families of non-trivial non-commutative non- 

cocommutative semisimple and cosemisimple Hopf algebras, Aqp and Aqp, for 

any two prime numbers p and q satisfying p = 1 (mod q). We prove that they are 

self-dual of dimension pq2, give an explicit form of their sub-Hopf algebras and 

simple subcoalgebras, describe their groups of Hopf automorphisms and study 

questions of quasitriangularity. These families form counterexamples of various 

natural questions from Section 2, and some new non-trivial ribbon unimodular 

Hopf algebras which can be used to compute Hennings and Kanffman's links and 

3-manifolds invariants. These families are biproducts of two quasitriangular Hopf 

algebras B x H. As will be seen in Theorems 2.13 and 3.16, quasitriangularity of 

B and H will not imply quasitriangularity of B x H (obviously quasitriangularity 

of B x H, for any B and H, implies quasitriangularity of H).  Two of the main 

results of this section are: 

THEOREM 2.13: Let p and q be prime numbers satisfying p = 1 (modq), and 

let k be a field containing primitive pth and q2th roots of unity. Then Aqp is 

quasitriangular if and only if q = 2. Furthermore, A2v admits exactly 2p - 2 

minimal quasitriangular structures and exactly two non-minimal quasitriangular 

structures with h[G ( A2p ) ] as the corresponding minimal quasitriangular sub-Hopf 

algebra. Moreover, none of the above-mentioned quasitriangular structures is 

triangular. 

We also prove that  Aqp and A c°p are isomorphic as Hopf algebras if and only o-qp 

i f q = 2 .  
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THEOREM 3.16: Let p and q be prime numbers satisfyingp = 1 (modq), and 

let k be a field containing primitive pth and qth roots of unity. Then ,Aqp is a 

self-dual semisimple Hopf  algebra of dimension pq2 which is not isomorphic to 

Aqp. Moreover, Aqp admits a non-minimal triangular structure, with k[G(Aqp)] 

as the corresponding minimal triangular sub-Hopf algebra, for any p and q. 

Furthermore, ~4qp admits minimal quasitriangular structures i f  and only i f  q = 2, 

and A2v admits exactly 2p - 2 such structures none of which is triangular. 

In particular we show that J4qp and A c°p are isomorphic as Hopf algebras for --qp 

any p and q. 

1. Pre l iminar ie s  

We will focus on some background material, and prove some new general results 

needed in this paper. Throughout this paper k is a field and k* is the group of 

units of k. The reader is referred to Sweedler's book [S] and Montgomery's book 

[M] as general references. 

1.1 FINITE-DIMENSIONAL HOPF ALGEBRAS. Let A be a finite-dimensional 

Hopf algebra over k with antipode s. Then A is an A-bimodule under multipli- 

cation. Thus the transpose actions on A*, described by 

(a --~ p, b) = (p, ba) and (p ~- a, b) = (p, ab) 

for a, b E A and p E A*, give A* an A-bimodule structure. Similarly A is an 

A*-bimodule, where 

p----~a= E a(1)(p, a(2)) and a z - - p =  E ( p ,  a(1))a(2) 

for p E A* and a E A, where we write A(a) = ~ a(1) ® a(2). 

"Twisting" multiplication and comultiplication in A gives rise to Hopf algebras 

A °v and A c°p, respectively. As a coalgebra A °p = A, and multiplication in A °p is 

defined by a. b = ba for a, b E A. As an algebra A c°p = A, and comultiplication in 

A c°p is defined by AC°V(a) = ~ a(2) ®a(1 ) for a E A. The antipode s is an algebra 

and a coalgebra anti-isomorphism. Thus A °p cop is a Hopf algebra with antipode 

s, and A °v, A c°v are Hopf algebras with antipode s -1. Thus A ~ A °w°p, and 

hence A °v ~- A c°p, as Hopf algebras. 
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Suppose that  B is a Hopf algebra, and let f :  A --+ B be a map of bialgebras. 

Then f is a map of Hopf algebras IS, Lemma 4.0.4]. 

A non-zero element g in A is said to be a g roup l ike  e l e m e n t  if A(g) = 

g @ g. The set of grouplike elements of A is denoted by G(A). G(A) is finite 

and, by [NZ], the order of G(A) divides dimA. Since A is finite-dimensional 

G(A*) = Algk(A , k). An element x E A is called a g : h skew p r i m i t i v e  

if A(x) = x ® g + h ® x ,  whereg ,  h E G(A). If, moreover, x ~ s p k { g - h }  

then x is called non-trivial. A is called p o i n t e d  if its simple subcoalgebras are 

1-dimensional, that  is, they are generated by grouptike elements. 

Let A E A be a non-zero left integral for A, and let A E A* be a non-zero right 

integral for A*. The left integrals for A form a one-dimensional ideal of A. Hence 

there is a unique a E G(A*) such that Aa = (a,a)A for all a E A. Likewise there 

is a unique g E G(A**) = G(A) such that pX = (p,g)X for all p E A*. We call g 

t h e  d i s t i n g u i s h e d  g roup l i ke  e l e m e n t  of  A and we call a t h e  d i s t i n g u i sh e d  

g r o u p l i k e  e l e m e n t  o f  A*. These grouplike elements play a fundamental role 

in the structure of A. A is said to be u n i m o d u l a r  if the ideal of left integrals 

for A equals the ideal of right integrals for A. Thus A is unimodular if and only 

if a = ¢, and A* is unimodular if and only if g = 1. 

1.2 BIPRODUCTS. Let H be a Hopf algebra with antipode SH over k and B 

a left H-module algebra with structure map T: H ® B --~ B, usually written as 

h .b .  The well known s m a s h  p r o d u c t  B # H  is defined to be B ® H as a vector 

space with multiplication 

(1) (b#h)(b'#h')  = Z b(h(1) " b') ® h(2)h' 

for b, b' E B and h, h ~ E H. Observe that l S # I H  is the unity of B # H  and that  

j: B ~ B # H ( b  ~ b# l )  and i: H ~ B # H ( h  ~ l # h )  are algebra embeddings. 

If moreover B is a left H-comodule coalgebra with structure map p: B -+ H ® B  

(we write p(b) = ~ b  (1) ® b (2)) then one can define A on B # H  by 

= (2)  

and 

(3)  E(b#h) = E(b)~(h) 

for b E B and h E H.  Observe that  II: B # H  ~ B(b#h  ~ bE(h)) and r :  B # H  --+ 

H(b#h  ~ c(b)h) are coalgebra surjections. 
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It was proved in [R1, Theorem 1] that  BCpH becomes a bialgebra with respect 

to the above if and only if 

(i) As(1B)  = 1B ® 1B, 

(ii) CB is an algebra map, 

= • h(2)~' for b,b' E B ,  (iii) AB(bb') ~ b(1)(b~ b~l)) ® ~(2)"(2) 

(iv) ~(h(1)"  b)(1)h(2) ® (h(1)" b) (2) = ~ h(1)b(1) ® h(2)-b (~) for b E B and h E H, 

(v) p is an algebra map and T is a coalgebra map. 

When B # H  is a bialgebra as above we say that (H, B) is an admiss ib le  pair ;  

we call it a b i p r o d u c t  and denote it by B x H. 

If, moreover, !B  E Homk(B, B) has an inverse under convolution, SB, then 

B x H is a Hopf algebra with antipode s given by 

(4) s(b × h) = × s . ( b ( 1 ) h ) ) ( s . ( b  × 1) 

for h e H and b E B [R1, Proposition 2]. 

Note that  H ¢-~ B x H -~ H are Hopf algebra maps and r o i -- idg. A is 

called a Hopf algebra with a projection if A contains a sub-Hopf algebra C such 

that  C ~-~ A Z~ C, where i is the inclusion map and Ir is a surjection of Hopf 

algebras satisfying 7r o i -- idc.  Thus B x H is such an A. In [R1, Theorem 3] it is 

shown that  A is a Hopf algebra with a projection if and only if it is a biproduct. 

We use this description to prove Theorem 1.2.1 and Propositions 1.2.2 and 3.5. 

In the following theorem we indicate that  the subcategory of finite-dimensional 

biproducts is closed under taking duals. 

THEOREM 1.2.1: Le t  A = B × H be a f ini te-dimensional  bialgebra over k wi th  

s t ruc ture  maps  T: H ® B -4 B and p: B --4 H ® B .  Then  A* -- B* × H* wi th  

s t ruc ture  maps  r*: B* -4 H* @ B* and p*: H* ® B* -4 B*. 

Proof'. Follows directly from [R1, Theorems 2, 3]. | 

In the following proposition we show that the subcategory of biproducts is 

closed under ®, "cop" and "op". 

PROPOSITION 1.2.2: Let  A = B x H and A '  = B '  x H ' .  Then:  A ® A' ,  A e°v 

and A °p are biproducts.  

Proof." Let i: H ~ A and i': H ~ ~-+ A' be the inclusion maps, and lr: A -4 H and 

7r': A' -4 H ~ be the surjections. Recall that  7r o i -- idH and ~r' o i '  = idH,. Now, 
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1. i Q i ' :  H ® H '  ~ A Q A '  is an inclusion, a n d ~ r ® l d :  A ® A '  -+ H ® H '  

is surjective. Since (Tr @ ~r') o (i ® i') = idH®H,, A ® A' is a b iproduct  by [R1, 

T h e o r e m  3]. 

2. Since i: H c°p ~ (B × H) c°p is an inclusion, 7r: (B x H) c°p ~ H ¢°p 

is surjective, and ~r o i = idHcop, it follows tha t  A ~°p is a b iproduct  by [R1, 

T h e o r e m  3]. 

3. Since i: H °p --+ (B x H) °p is an inclusion, ~: (B × H) °p -+ H °p is surjective, 

and 7r o i = idHov, it follows tha t  A °p is a b iproduct  by JR1, Theo rem 3]. 

This  completes  the proof  of the proposit ion.  I 

In the following proposi t ion we characterize some homomorph i sms  in the 

subca tegory  of biproducts .  

PROPOSITION 1.2.3: Let B × H and B' x H' be two biproducts over k with 

structure maps % p and T ~, p' respectively. Suppose f: B -~ B'  is an algebra 

and a coalgebra map,  and g: H --~ H r is a bialgebra map.  Then, the m a p  

f x g: B x H -+ B '  × g ' ,  given by ( f  x g)(b x h) =- f(b) x g(h) for all b • B and 

h • H, is a bialgebra m a p  if  and only if  

f ( h .  b) = g(h).  f(b) and p'(f(b)) = (g® f)p(b) 

for all b E B and h E H. 

Proo~ Since on one hand  

( f  x g)((b × h)(b' × h')) = ( f  × g ) ( E b ( h o ) ,  b') × h(2)h') 

= E f(b)f(h(1),  b') × g(h(2))g(h') 

and on the  other  hand  

( ( f  x g)(b x h) ) ( ( f  x g)(b' x h')) = (](b) x g(h))(f(b') x g(h')) 

= E f(b)(g(h)(1), f(b')) x g(h)(2)g(h') 

= E f(b)(g(ho))" f(b')) x g(h(2))g(h') 

for all b, b t E B and h, h'  E H ,  it follows tha t  f × g is an a lgebra  m a p  if and only 

if 

E f(h(1)" b) x g(h(2)) = E if(h(1))" f(b) x if(h(2)) 

for all b E B and h E H.  The  first condit ion is derived now by apply ing  I ® e 

to bo th  sides of the  above equation.  Similarly, one can show tha t  the  second 
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condition is equivalent to f x g being a coalgebra map. This completes the proof 

of the proposition. | 

Remark 1.2.4: Note that B ~ is a left H module via pull-back along g and that  B 

is a left H ~ comodule via pull-back along g. Then, the conditions in Proposition 

1.2.3 are equivalent to saying that f is also a module map and a comodule map. 

1.3 QUASITPdANGULAR HOPF ALGEBRAS. We recall now the definition of 

a finite-dimensional quasitriangular Hopf algebra and some of its properties. 

We heavily use in the sequel the fact that there is a bijection between these 

Hopf algebras and certain associated Hopf algebra maps. We follow the con- 

ventions of [R3]. Let A be a finite-dimensional Hopf algebra over k and let 

R -- ~--~R (1) ® R  (2) E A ® A .  Define a linear map fR : A* ~ A by fR(P) = 

~-]~(p, R(1))R (2) for p E A*. The pair (A, R) is said to be a quasitriangular Hopf 

algebra if the following axioms hold (r = R): 

(QT.1) ~ A(R (1)) @ R (2) = ~ R (1) ® r0) @ R(e)r (2) , 

(QT.2) ~e (R(1) )R  (2) = 1, 

(QT.3) ~ R (1) ® Ac°P(R(2)) = ~ RO)r (1) ® R (2) ® r (2) , 

(QT.4) ~-]~R(1)e(R(2))=I and 

(QT.5) (Ac°P(a)) R = R(A(a)) for all a e A; 

or equivalently, if fR : A* ~ A c°p is a Hopf algebra map and (QT.5) is satisfied. 

Observe that  (QT.5) is equivalent to 

(QT.5)' ~(P(1), a(2))a(1)fR(p(2)) = ~(P(2), a(1)>fR(P(1))a(2) 
for all p E A* and a E A. 

Note that  the map f~: A *°p ~ A is a Hopf algebra map which satisfies 

f~(p) = E ( p ,  R(2))R (1) and 

E (P(1), a(1))a(2)f*R (P(2) ) = E(P(2) ,  a(2)) f*n (P(1) )a(1) 

for a l l p 6 A *  a n d a E A .  

Conversely, let f :  A *c°p --+ A be a Hopf algebra map, and let RI E A ® A 

be the corresponding element via the canonical vector spaces isomorphism be- 

tween Homk(A*, A) and A ® A (i.e. f = fnf)" We say that  f determines a 

quasitriangular structure on A if (A, Rf)  is quasitriangular, or equivalently, if f 

satisfies (QT.5)'. 
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A quasitriangular Hopf algebra (A, R) is called t r i a n g u l a r  if R -1 = R ~ where 

R ~ = ~ R (2) ®R (1). Note that this is equivalent to fR *fR~ = c in the convolution 

algebra Homk(A*, A), i.e. to fry = fR o s. 

Let (A, R) be quasitriangular and suppose that f : A -+ A ~ is a surjective 

Hopf algebra map. Set R' = ( f  ® f )  (R); then (A', R') is quasitriangular. 

Let (A,R) be quasitriangular. Set R = ~ R  (1) ® R  (2), B = spk {R (1)} and 

H -- spk {R(2)}. Note that B = Im(f~) and g = Im(fn) , hence B and H 

are sub-Hopf algebras of A. Let An be the sub-Hopf algebra of A generated 

by B and H. Then (An, R) is a quasitriangular Hopf algebra, there exists an 

isomorphism of Hopf algebras f: B*c°P--+H and a unique surjection of Hopf 

algebras F: D(B) -+ An satisfying Fls = ipB and Fl,.co p = f,  where D(B) is 

the Drinfel'd double of B and i is the inclusion map [R3]. If A = An then (A, R) 

is called a m i n i m a l  quasitriangular Hopf algebra. We shall also say that  A is 

a minimal (quasi)triangular Hopf algebra if there exists R E A ® A such that  

(A, R) is a minimal (quasi)triangular Hopf algebra. 

Remark 1.3.1: Let (A, R) be a finite-dimensional quasitriangular Hopf algebra. 

If fR is an isomorphism then (A, R) is minimal. Thus, if f :  A *c°p --+ A is a Hopf 

algebra isomorphism satisfying (QT.5)' then (A, Ry) is minimal quasitriangular. 

In particular, if A is commutative and cocommutative (e.g., k[G] where G is a 

finite abelian group) and f :  A* ~ A is a Hopf algebra isomorphism, then (A, Ry) 

is minimal quasitriangular. 

The converse of the above is not necessarily true, that  is, (A, R) could be 

minimal quasitriangular without fR being an isomorphism. In 2.2 we show that  

the converse holds when (A, R) is minimal triangular. 

Let (A, R) be a finite-dimensional quasitriangular Hopf algebra with antipode 

s over k. For ~ e G(A*) we define g~ = ~~R(1)(~,R (2)) = f~(~). By [KR1], g~ 

is in the center of G(A). Let g E A and (~ E A* be the distinguished grouplike 

elements of A and A* respectively. As in [D] set 

(5) u = ~ s ( n ( 2 ) ) R  (1), h = g~g-1 e G(A) and c = us(u). 

Note that  u, g~ and c belong to An. Since R is invertible it follows that  u is 

invertible as well. By [D] 

(6) A(u) = (u ® u)(R~R) -1, ~(u) = 1 
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and 
(7) s2(a) = uau -1 for all a E A. 

By (6), u E G(A) if and only if (A, R) is triangular. 

The element c is a central element, hence called the Casimir element of (A, R). 

By [KR1] 

( 8 )  c = u~h, 

thus by (5) 

(9) h = U--Is(u) E An 

and so g E A R  as well. Since c is central, (7) and (8) imply that 

(10) s4(a) -- h-iah for all a E A. 

The grouplike element h -- gag-1 plays the primary role in the study of ribbon 

Hopf algebras [KR1]. 

A finite-dimensional ribbon Hopf algebra over k is a triple (A, R, v), where 

(A, R) is a finite-dimensional quasitriangular Hopf algebra over k and v E A 

satisfies the following: 

(R.0) v is in the center of A, 

(R.1) v: = us(u), 

(R.2) s(v) = v, 

(R.3) e(v) = 1, 

(R.4) A(v) = (v ® v)(R~R) -1 = (R~R)-I(v ® v). 

Observe that G = u- i v  is a grouplike element of A. It is called the spec ia l  

g roup l ike  e l e m e n t  of A. Ribbon Hopf algebras were introduced and studied by 

Reshetikhin and ~hraev [RT]. The reader is referred to [R2, Section 2] and [n, K, 

KR1, KR2] for an extensive study of ribbon Hopf algebras and their connections 

with Hennings and Kanffman's invariants. 

Remark 1.3.2: Any triangular Hopf algebra is ribbon with 1 as the ribbon element 

and u-1 as the special grouplike element. 

The following lemma connects u to unimodularity and thus has interesting 

corollaries. 

LEMMA 1.3.3: Let (A, R) be a finite-dimensional quasitriangular Hopf algebra 

over k and let ~ and & be the distinguished grouplike elements of An and A* R 

respectively. Then: 
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(1) gag -1 = ga~ -1, hence g:al g(~ does not depend on R. 

(2) Suppose further that An  and A* n are unimodular. Then u = s(u), s 4 = I 

and g~ = g. 

Proof: (1) Set h = ga~-l .  By the above constructions, and since u E An ,  we 

have h = u - i s (u ) ,  and thus h = h. 

(2) If A n  and A~ are unimodular then .~ = 1 and 5 = e, hence ga = 1, and so 

= 1. By (1), h = 1 and hence s 4 = I ,  u = s(u) and g~ = g. | 

Remark  1.3.4: It may happen that An will be unimodular, but A~ will not. 

Let A be Sweedler's example. Recall that  D(A) is minimal quasitriangular, and 

unimodular [R3, Theorem 4]. But, since A and A* are not unimodular, D(A)* 

is not unimodular JR3, Corollary 4]. 

A corollary of 1.3.3 is that  under semisimplicity assumptions u has further 

properties. 

THEOREM 1.3.5: Let ( A , R )  be a finite-dimensional quasitriangular Hopf  

algebra over k. Then: 

(1) I f  AR is semisimple, then u = s(u) and s 4 = I. 

(2) Assume the characteristic of  k is 0 or p > (dim A) 2. I r A  is semisimple then 

A is ribbon with u as the ribbon dement and 1 as the special grouplike 

element. 

Proof: (1) Since A n  is minimal quasitriangular it follows that it is also 

cosemisimple [R3, Proposition 14], and hence that A n  and A~ are unimodu- 

lar. Thus part (1) follows from Lemma 1.3.3. 

(2) Since a sub-Hopf algebra of a semisimple Hopf algebra is also semisimple 

it follows that  A n  is semisimple, and hence that  u = s(u) by part (1). Since 

AR is also cosemisimpte, it follows from our assumption on the ground field, and 

[LR2, Theorem 3], that  s 2 = I, and hence that u is a central element of A. This 

concludes the proof of the corollary. | 

Let A be a finite-dimensional Hopf algebra over k. Recall [LR1, Theorem 3.3] 

that  over characteristic 0, if A is cosemisimple then it is also semisimple and 

hence unimodular. In the following corollary of Lemma 1.3.3 we prove that  for 

quasitriangular A, unimodularity follows regardless of characteristic. 

THEOREM 1.3.6: Let ( A, R) be a finite-dimensional cosemisimple 

quasitriangular Hopf  algebra over any field k. Then A is unimodular. 
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Proof." By [R3, Proposition 14] An is a semisimple and cosemisimple 

quasitriangular Hopf algebra. It follows from Lemma 1.3.3 that ga = g. But 

A* is semisimple, hence g = 1 and so g~ = 1. 

Now recall that  the map F: D(A) --4 A given by F(p ~ a) = fR(p)a for all 

p E A* and a E A is a projection of Hopf algebras [D]. Let A and A be non-zero 

left integral and right integral for A* and A respectively; then by JR3, Theorem 

4] A ~ A is a two-sided integral of D(A). Now, since A* is semisimple, (A, 1) ~ 0 

and so 
F(A ~ A) = E ( A ,  R(1))R(2)A 

= E(A, R0))(a, R(2))A 

= <A, ga>A = <A, l)a 

is a non-zero two-sided integral of A, and we are done. | 

2. T r i a n g u l a r  H o p f  a lgebras  

In this section we discuss properties of finite-dimensional triangular Hopf 

algebras such as: connections between A and A*, unimodularity and various 

connections between the distinguished elements, and its effect on semisimplicity. 

These properties will enable us to easily decide whether certain Hopf algebras 

admit triangular structures. These criteria will be used in Section 3. 

Radford has proved that  if A is a finite-dimensional Hopf algebra then D(A)* is 

quasitriangular if and only if both A and A* are. Moreover, if (A, r) and (A*, R) 

are quasitriangular then (D(A)*, T~) is quasitriangular where 

(11) 7~ = E ( h i .  r (2) @ R(Dh;) ® (r 0).  s-l(hj)  @ h*n (2)) 

and {hi} and {h*} are dual bases of H and H* respectively [R3, page 311]. In 

the following we check what happens in the triangular case. 

PROPOSITION 2.1: Suppose A is a finite-dimensional Hopf algebra over k. Then 

the following are equivalent: 

(1) D(A)* admits a triangular structure. 

(2) A and A* admit triangular structures. 

Proo~ Since A °p and A* are homomorphic images of D(A)*, (1) implies (2). 

Suppose now that  (A,r) and (A*,R) are triangular and let fr  and fR be the 
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corresponding maps. Then it is not hard to verify that the map Fn: D(A) ~°p --+ 

D(A)* corresponding to T¢ in (11) is given by 

(12) - 1  • F~ (p ~ h) -- E s (h(2))f~ (P0)) ® P(2) fR (h0)) 

and that the map F~ = F~T : D(A) °p --+ D(A)* is given by 

(13) F ~ ( p ~ h ) =  Efr(p(2))ho)  * h s - 1  ® fR( (2 ) )  (P(1)). 

We prove that part (2) implies part (1) by showing that Fnn~ = Fn *Fn~ = ~o(a)" 

Indeed, 

(F n * FnT)(pMh) 

= ( F  n ® Fre T ) E ( p ( 2 )  t><l h(1 ) ® P(1) I><1 h(2)) 

= ~(s-l(h(2))f*(p(3)) ®P(t)fR(ho)))" (h(p(2))h(3) ® f~(h(t))s-l(p(1))) 

= E h (P(2))h(3)S-1 (h(2))f* (P(3)) ® P(4)fn (h(1))f~ (h(4))s-1 (P(1)) 

= E fr(P(2))f*(P(3))®P(4)fn(ho))f~(h(2))s-l(P(y)) 

= E ~(p(2))1 ® P(a)E(h)s-I(p(1)) 
= h ) .  

This concludes the proof of the theorem. | 

Let (A, R) be a finite-dimensional quasitriangular Hopf algebra. It is well 

known that G(A*) is abelian [D]. In the following we show that when (A, R) is 

minimal triangular, much more can be said; the converse of 1.3.1 is true. 

THEOREM 2.2: Let (A,R) be a finite-dimensional minimal triangular Hopf 

algebra over k. Then: 

(1) The map fR: A*C°P ~ A is an isomorphism of Hopf algebras. In particular 

A* and D(A)* admit triangular structures. 

(2) The groups G(A) and G(A*) are abelian. 

Proof'. (1) Let B = spk{R (1)} and H = sPk{R(2)}. Then B "~ H *c°p as Hopf 

algebras. By [D], R -1 = ~-]~s(R (1)) ® R (2), and hence in the triangular case 

~ s ( R  (1))@R (2) = ~ R  (2)@R (1). Thus, B = H. SinceA = Aa = B H w e  

conclude that A = H 2 -- H and A ~ A *c°p via f~, hence A* admits a triangular 

structure. 
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(2) In general, if (A, R) is quasitriangular then G(A*) is abelian [D]. Since fR 

is an isomorphism of Hopf algebras it follows that G(A) ~- G(A*), and hence 

G(A) is abelian. II 

The following are some consequences of Theorem 2.2 which shed light on 

minimal triangular pointed or semisimple Hopf algebras. 

THEOREM 2.3:  Suppose (A, R) is a finite n-dimensional semisimple minimal 

triangular Hop[ algebra over a tield k containing a primitive nth root of unity 

and that G(A) is cyclic. Then G(A) = (u), and it is trivial or of order 2. 

Proof." Since (A, R) is semisimple and minimal it is also cosemisimple, and hence 

A and A* are unimodular. Thus, by Lemma 1.3.3, u = s(u). But u • G(A), 

hence s(u) = u -a, and we have u 2 = 1. Since (A, R) is triangular it follows that  

f~ = fR o s and hence 

= s(R (2))R(1)> = s(R R(1)) 

= <c,, s ( f . ( c , ) )  = <.,  f . ( s - i ( o t ) ) )  = (o~, f . ( s (o t ) ) )  

= (OL, f~ (o l ) )  = (O~, f . ( o~ ) )  

for c~ • G(A*). By Theorem 2.2, f ,  induces an isomorphism between G(A) 

and G(A*), hence G(A*) is cyclic too. Let f~ be a generator of G(A*); then 

fR (f~) generates G(A) and we have by the above that (~, u) = (/~, f ,  (~)). Now, 

generally if G = (x) is cyclic of order m then G (the group of characters) is cyclic 

of order m generated by ~7, and (r/, x) is a primitive ruth root of unity. Thus, if 

u -- 1 then, by the above, (fl, fR(~)) = (f~,u) = 1 so m - 1. I f u  ~ 1 then, since 

u 2 = 1, 1 = (~,u 2) = (j3, u) 2 = (/~, fn(~))  2 hence (/~, fR(fl)) = -1 ,  and we have 

m = 2. This completes the proof of the theorem. | 

Remark 2.4: We shall use the above theorem in Corollary 3.10 to prove that  

certain Hopf algebras we construct, A = A2p, are never triangular, though A is 

minimal quasitriangular, A ~- A *c°p as Hopf algebras and G(A) is abelian. 

The following is an example of a semisimple minimal triangular Hopf algebra, 

A, such that  G(A) is not cyclic. 

Example 2.5: Suppose that  the field k contains a primitive n th  root of unity, w, 

and let A = k[(a)] ® k[(b)] ~ k[Zn x Zn]. Then G(A) is not cyclic but A admits a 

minimal triangular structure. To see this let c~, fl E A* be so that (~, aib j) = a)J 
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and (/3, aib j) = w i. Then A* = k[(a)] x k[(fl/], and the map f:  A* --+ A, given by 

f ( a )  = a and f(f~) = b -1, determines a minimal quasitriangular structure on A. 

Moreover, (ai~ j, u) = ~-~(a~/? j, s(R(2))R (1)) = ~(~ i f l j ,  s(R(2)))(o~i~j, R(1)) = 

(o~ifl j, (s o f )(ai f lJ))  = (aiflJ,s(aib-J)) = (o~iflJ,a-ib j) = w i j- i j  = 1, hence 

u = 1, which implies that A is triangular. 

Since the standard finite-dimensional triangular Hopf algebras are pointed, a 

natural question is whether this is always true. The following example shows the 

answer is negative. 

Example 2.6: Let H be Sweedler's 4-dimensional Hopf algebra, and suppose that  

the characteristic of k is not 2. Then D(H)* is triangular but never minimal. To 

see this recall [G2, R3], which describes all the quasitriangular structures that  

H admits. Note that  all of them are triangular. Since H* and H are isomorphic 

as Hopf algebras, it follows from Theorem 2.1 that D(H)* admits triangular 

structures. Recall that  H and H* are pointed and hence that D(H)  c°p is pointed 

too. Since D(H)* is not pointed JR1, page 315] it is not isomorphic to D(H)  c°p 

as a Hopf algebra. Therefore we conclude from Theorem 2.2 that D(H)* is never 

minimal. 

The examples in Section 3 (Theorem 3.16) show that even under semi- 

simplicity the answer is still negative. However, A in these examples is not 

minimal triangular. We conjecture: 

CONJECTURE 2.7: Let ( A, R) be a finite-dimensional minimal triangular Hopf  

a/gebra over a field k of characteristic O. Then A is pointed. In particular, if A 

is semisimple then A = k[G(A)] is commutative. 

One instance in which A is assured to be pointed is when A is generated by 

grouplike elements and skew primitives (all standard examples, e.g. Uq(sl,~)', 

U(N,~,~) and / /4 ,  are of this type [G1, GW]). We then prove: 

THEOREM 2.8: Let (A, R) be a finite-dimensional minimal triangular Hopf  

algebra over a field k of characteristic O. I f  A is generated as an algebra by 

grouplike elements and skew primitive elements then: 

(1) k[G( A )] admits a minimal triangular structure. 

(2) There exists a projection 7r: A --+ k[G(A)], thus A = B x k[G(A)] is a 

biproduct. 

(3) I r A  ~ k l  and G(A) is cyclic, then G(A) = (u) is of order 2. 
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Prook (1) By Theorem 2.2, G(A) is abelian hence k[G(A)]* ~- k[a(A)]. By 

the same theorem k[G(A)] ~- k[G(d*C°P)], hence dimk[G(A)]* = dimk[G(A*)]. 

Since A and A *c°p are isomorphic as Hopf algebras, it follows that A* is also 

minimal triangular. Suppose (A*, r) is minimal triangular and consider the 

following series of maps: 

k[a(A)] ~-~ A c°p fr~ A* i*> k[O(A)]*. 

We claim that  il*k[a(A.)]: k[G(A*)] -~ k[G(A)]* is injective, hence an isomorphism 

of Hopf algebras. Indeed, if a, j3 E G(A*) are such that i*(a) = i*(fl) then 

(a, g) = (~, g) for all g E G(A),  but (a, x) = (fl, x) = 0 for all non-trivial skew 

primitives x (if such x does not exist then, by our assumption, A = k[G(A)] and 

there is nothing to prove). Hence a = ~ on generators of A, thus a = 13 on A. We 

thus conclude that  the map i* o L o i: k[G(A)] -~ k[a(A)]* is an isomorphism of 

Hopf algebras, hence determines a minimal quasitriangular structure on k[G(A)]* 

by Remark 1.3.1. We now wish to show that this structure is minimal triangular. 

Indeed, (k[G(A)]*, (i* ® i*)(r)) is triangular and 

= 

= i * ( Z ( i ( g ) ,  r(1))r (2)) 

= i* o L o i ( g )  

for all g E k[G(A)]. This implies that 

f(i*®/*)(r) = i* o f~ o i, 

hence (k[G(A)]*, (i* ® i*)(r)) is minimal triangular. Since k[G(A)] and k[G(A)]* 

are isomorphic as Hopf algebras we are done. 

(2) Set ~o = i* o f~ o i and rr = ~o -1 o i* o f~. Then ~r: A -+ k[G(A)] is onto, and 

moreover rro i -= ~o -1 o i* o f r  o i = ~o -1 o ~o = idk[G(A)], hence Ir is a projection 

of Hopf algebras and we are done. 

(3) Suppose A ~ kl  and G(A) is cyclic. By our assumption on the ground field, 

k[G(A)] is semisimple and, by part (1), it is also minimal triangular. Therefore, 

by Theorem 2.3, G(A) = (u) is trivial or of order 2. Since A 7~ kl,  if G(A) were 

trivial A would contain a primitive element, which is impossible in characteristic 

0. Thus, G(A) = (u) is of order 2 and we are done. | 

If A is not semisimple then it is not necessarily unimodular. This lack of 

unimodularity gives rise to the distinguished grouplikes, which in turn affect 
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s 2. In the following we describe connections between these elements of A and 

AR, which turn  out  to be related to u. The  results are t ight when A is odd- 

dimensional. 

LEMMA 2.9: Suppose A and B are finite-dimensional Hopf algebras over k and 

let f: A -+ B be an isomorphism of Hopf algebras. Then f* (/3) = a where a and 

/3 are the distinguished grouplike elements of A* and B* respectively. 

Proof'. Let A be a non-zero left integral of A. Then  f(A) is a non-zero left integral 

of B. Hence, f(A)b = (fl, b)f(A) for all b E B. Write b = f(a) for a E A. Then  

f (A) f (a)  = (/3, f (a) ) f (A)  = (f*(/3),a>f(A) for all a E A. On the other  hand, 

f (A) f (a)  = f(Aa)  = f ( (a ,a)A)  = (a,a)f(A) for all a • A. Thus  the result 

follows. | 

COROLLARY 2.10: Suppose ( A, R) is a finite-dimensional quasitriangular Hopf 

algebra over k and that fR: A*C°B --+ A is an isomorphism of Hopf algebras. Let 

g and a be the distinguished grouplike elements of A and A* respectively. Then: 

(1) go = g - l ,  hence h = g-2. 

(2) s ( u )  = ug - 2  

Proof'. Since ga = f~(a) and g-1  is the distinguished grouplike element of 

(A*C°P) * = A °p, par t  (1) follows from Lemma 2.9. Par t  (2) follows now from 

par t  (1) and (9). | 

THEOREM 2.11 : Suppose (A, R) is a finite-dimensional triangular Hopf algebra 

over k and  let g, ~, a and & be the distinguished grouplike elements of A, AR, 

A* and A* R respectively. Then: 

(1) go -- ~-2g, hence does not  depend on R. 

(2) u 2 -- ~2. In particular, i f lG(A)l  is odd then u -- ~. 

(3) Suppose further that AR is unimodular (e.g. when A is semisimple); then 

ga = g, u 2 = I and  s 4 = I. If, moreover, IG(A)I is odd then u -- 1 and 

s 2 = I .  

(4) Suppose that ( d i m n ) l  • 0 and that JG(A)J is odd. Then A is semisimple 

and cosemisimple i f  and only i f  AR is tmimodular. 

(5) Suppose that A is unimodular; then g = ~2. If, moreover, IG(A)I is odd 

then ~ = g (Igl+l)/2. 
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Proo~ (1) By Theorem 2.2 and Corollary 2.10, ga -- g - 1  hence the result follows 

from Lemma 1.3.3. 

(2) Recall that  u 6 G(An). Since .~ e G(AR) we conclude, using Corollary 2.10 

and Theorem 2.2, that  u -1 = s(u) = u~ -2. Since G(AR) is abelian by Theorem 

2.2 this implies (uO-1) 2 = 1. Therefore, if [G(A)[ is odd then u = .~. 

(3) Since An is unimodular A~ is unimodular too by Theorem 2.2. Hence, 

.~ -- 1 and the result follows from parts (1) and (2). 

(4) Since s 2 = I implies that  A is semisimple and cosemisimple [LR1, Corollary 

2.6] the result follows from part (3) and (7). 

(5) Follows from part (1). | 

COROLLARY 2.12: Suppose (A,R) is a finite-dimensional triangular Hopf 

algebra of odd dimension over k. Then: 

(1) I rA  and A* are unimodular, then 

(2) AR and A* n are unimodular, and then 

(3) s 2 = I. 

Proof." If A and A* are unimodular then h -- 1. But h -- .~-2 as well. Therefore 

~2 = 1. Since ]G(A)] is odd this implies ~ = 1, which is equivalent to A~ being 

unimodular. Since A~ is isomorphic to An, by Theorem 2.2, we have proved 

that  part (1) implies part (2). Now, since dimA is odd, so is [G(A)[, hence by 

Theorem 2.11(3) part (2)implies part (3). | 

COROLLARY 2.13: Suppose (A,R) is an odd-dimensional triangular Hopf 

algebra over k. Suppose further that (dimA)l # 0. Then the following are 

equivalent: 

(1) A and A* are unimodular. 

(2) An is unimodular. 

( 3 )  s 2 = I .  

(4) A is semisimple. 

Proof." Now suppose (dimA)l  # 0, and s 2 = I, then A and A* are semisimple 

[LR1, Corollary 2.6]. This implies that A and A* are unimodular and we are 

done. | 

Example 2.14: We show that  the assumption on the oddness of ]G(A)[ in Theo- 

rem 2.2 and in Corollary 2.13 is necessary. Suppose the characteristic of k is not 
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2 and let A = k ( a , x , y [ a  2 = 1,x 2 = y2 __ O, x a  = - a x ,  ya  = - a y ,  x y  = - y x ) .  

Then A is a Hopf algebra where a is a grouplike element and x, y are a : 1 skew 

primitive elements. Note that s 2 ¢ I. By [G1, Propositions 2.2.1 and 2.2.3] A 

and A* are unimodular of dimension 8, and (A, R) is quasitriangular if and only 

if 
R = l { ( l ® l + l ® a + a ® l - a ® a )  

+ c~(z ® x - a x  ® x + z ® a x  + ax  ® ax )  

+ / 3 ( x ® y + x ® a y - a x ® y + a x ® a y )  

+ 7 ( Y  ® x + y ® a x -  ay  ® x  + ay  ® ax)  

+ 6 ( y ® y - a y ® y + y ® a y + a y ® a y )  

-t- (/3")' - o~6)(xy ® a x y  - a x y  ® a x y  + x y  ® ay  q- a x y  ® x y ) }  

where c~,/3, 7, 6 E k. Since u = a(1 + (7 - /~ )zy) ,  (A, R) is triangular if and only 

if/3 = 7. Note moreover that for/~ = 7 ¢ 0, An = A, thus An is unimodular 

while s 2 ¢ I. If/~ = 7 = 6 = 0 and c~ ~ 0, An is Sweedler's Hopf algebra, which 

is self-dual and not unimodular, while A and A* are unimodular. 

E x a m p l e  2.15: The assumption on the characteristic of k in Corollary 2.13 is 

necessary. Let k be a field of odd characteristic p. Let 

A : k ( e , f ] [ e , f ]  = e, f P  : f ,  e p = O) 

where e, f are primitive elements. Then, dim A = p2 is odd [LS, Section 6]. Since 

A is cocommutative, s 2 = I and (A, 1 ® 1) is triangular. But, A and A* are not 

unimodular [LS, Section 6]. 

3. Self-dual Hopf  algebras of dimension pq2 and their quasi- 
triangularity 

In this section we construct two families of new non- 

commutative non-cocommutative semisimple and cosemisimple Hopf algebras, 

give an explicit form of its sub-Hopf algebras and simple subcoalgebras, and study 

questions of quasitriangulaxity. These families form counterexamples of various 

natural questions from Section 2, and some new non-trivial ribbon unimodular 

Hopf algebras which can be used to compute Hennings and Kauffman's links and 

3-manifolds invariants. These families are biproducts of two quasitriangular Hopf 

algebras B x H. As will be seen in Theorems 3.11 and 3.16, quasitriangularity of 
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B and H will not imply quasitriangularity of B x H (obviously quasitriangularity 

of B x H,  for any B and H,  implies quasitriangularity of H). 

One of the main results of this paper is based on a construction of biproducts 

of group algebras of cyclic groups. Let H = k[(0)], where (0) is a cyclic group of 

order n. Assume k contains a primitive nth root of unity, r/. Then H is semisimple 
n--1 k H* with idempotent integral t = ( l /n )  ~k=0 0 , and = k[(A)], with (),, 0) = r/. 

Now by [CRW, 2.6] the set 

(14) {A i --~ tIi = O , . . . , n -  1} 

is a set of orthogonal idempotents of H whose sum is 1. By [CRW, 2.5.1] (A k, t) = 

~o,k, so we have (AJ,A - i  --~ t) = ( M - i , t )  = ~i,j. On the other hand, H = (H*)*, 

with basis P~,, dual to the basis {Ai} of k[(A)] = H*, where ( M , P ~ , )  = ~i,j, 

hence A - i  ~ t = Pa~, and so 

(15) A(A - i  ~ t) = ~ (A -k ~ t) ® (A -~ ~ t). 
k + s = i  (mod n) 

Let A be an H-module algebra. The idempotents A i --~ t play an important role 

in defining semiinvariants, A~,  that is 

A x  ' = ( A - i  __~ t) . A = {a e A I h . a  = (A i , h )a ,  all h e H}. 

In particular, suppose G is any finite group and 0: G --~ G is an automorphism 

of order n. Extend 0 to A = k[G] linearly, thus making A an g = k[(0)]-module 

algebra. Moreover, A is an H-module coalgebra, since both A and H are group 

algebras. Thus, by (15), if a E G,  then 

(16) A ( ( A  - i  --~ t ) .  a) = E (A - k  ~ t ) . a  ® (A - s  --~ t ) .  a. 

k+s=i (rood n) 

By (14), 

(17) 
n--1 n--1 

A = ~ I ~ ( A - '  ~ t) . A =  ~ A ~ , .  
i=O i=O 

Now let {cj }3=0, with Co = 1 and cl = b, be a set of representatives of the disjoint 

orbits of the action of 0 on G; then by (14) and (17) the non-zero elements in 

{(A - i  ~ t) • cjlO <_ j <_ r, 0 < i < n - 1} form a k-linearly independent set. It 

furthermore spans A, for if x belongs to the same orbit as cj ,  that is, x = Ok(cj) ,  

then by [CRW, 2.1.1] 

(18) ( A - '  ~ t ) . x = ( A - '  ~ t ) . O k ( c j ) = ( A i , o k ) ( A - i ~ t ) . c j .  



Vol. 102, 1997 

n--1 --i Since x = ~-']~i=o (~ --~ t) . x ,  we are done. 

Set b~ = (;~-i ~ t ) . c j ,  then by (16) 

QUANTUM GROUPS OF DIMENSION pq2 

(19) A(~)  = E ~ ® ~ "  
tq-r=i(mod n) 

Note also that 

( 2 0 )  = 

247 

Suppose now that  G = (b) is a cyclic group and that m is in the group of units 

of the integers modulo Ib[. Let (h) be a second finite cyclic group such that  ]m[ 

divides [hi, and set n = [h[/Im [. Using the above we construct now the biproduct 

k[(b)] x k[(h)]. Define ~-: (h) --> Aut((b)) via h i .  b j = b jm~. Then, T is a well 

defined group homomorphism by the above assumptions and kerT- = C a) is of 

order n, where a = h ImL. Moreover, k[(b)] becomes a left module algebra over 

k[(h)] via extending 7- linearly. Let us denote (with abuse of notation) this action 

by T: k[(h)] ®k[(b)] -~ k[(b)]. Suppose there exists O: (b) --+ (b), an automorphism 

of order n. Extend 0 to k[(b)] linearly. Suppose further that the field k contains 

primitives Ihlth and Iblth roots of unity, and let ~1 be a primitive nth root of unity. 

Set k[(b)]i = k[(b)]~,, and define p: k[(b)] --+ k[(h)] ® k[(bl] via p(~) = a i ® ~ .  

Then it is straightforward to check that (k[(b)], k[(h)]) is an admissible pair with 

structure maps 7- and p indicated above. Hence the biproduct A = k[(b)] × k[(h)] 

is a well defined Hopf algebra. Observe that as an algebra, A is the group algebra 

of the semidirect product group of (b) and (h). 

If moreover Ihl = n 2, we may choose 0 = ~-(h) and then much more can be 

said. Let 7 e k[(h)]* be so that (7, h) is a primitive Ihlth root of unity with 

(%h) n = 77, and let f l e  k[(b)]* be so that (fl, b) is a primitive Iblth root of 

unity. Then k[(b)]* = k[(/~)] and k[(h)]* = k[(7)]. Let f :  k[(/~)] --+ k[(b)] and 

g: k[(7)] --~ k[(h)] be the Hopf algebra isomorphisms determined by f(~)  = b and 

g(7) = h. Observe that by Theorem 1.2.1, A* = k[(b)]* × k[(h)]* with structure 

maps T* and p*. Also, replacing 0 by 0* yields a linear basis {~J} of k[(/~)]. 

PROPOSITION 3.1: Let I hl = n 2, and suppose that the field k contains primitives 

n2th and Iblth roots of unity. Let A = k[(b)] x k[(h)], f ,  g, T and 77 be as above 

with 0 = r(h).  Then: 

(1) f × g: A* ~ A is an isomorphism of  Hopf  algebras. 

(2) = o i f i  # k. 
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Proof." (1) First note that r/i = (7 '~i, h) = (7 i, h n) = (Ti ,a) ,  where the last 

equality follows since a = h ~. Denoting by • the action induced by p* we have 

= ( 7 ® Z , a  i ® ~ )  = r//(/3, ~ )  

= { z , 0 ( ~ ) )  = (0"(~),~) 

for all ~ e k[(b)]i. Thus, 7"/~ -- 0*(fl) so 7 n generates the kernel of this action, 

and it is easy to verify that  0"(/~) = f~m. 

Repeating the above construction by replacing 0 by 0* yields a linear basis 

{ i } of k[(/~)], with ®/3~. Indeed, 

(~*(~),h ® b',)= (~, h- b',) 
j t = (z , ,  0 ( b , ) ) =  (0"(Z~), b',) 

i j ®/~i, h ® 

for all b i e k[(b)]~, thus T*(f~) = ~ '  ® fl[. 

Now, by Theorem 1.2.3 it is sufficient to show that  

• p(f(/~ )) = (g ® f)T*(flJi). f(~'-/~) = g('y) f(/~) and J 

Indeed, 

f ( 7 "  j3) = f( /3 m) = b m = h .  b = g(7)" f(/3). 

For any 0: k[(b)] ~ k[(b)] 

( o ( f ( ~ ) ) , / ~ )  = (O(b),/~) = (b,O*(/3)) = (f ( /~) ,  0"(/~)) = (/3, f*(O*(/3)) ) .  

Setting 0 = id, we have shown that  f = f*, and hence by the above Of = fO* 

for all such 0. Therefore O(f(/3~)) = f(O*(/3~)) = rl ' f( /~) and we have 

p(f(t3~)) = a i ® f(~Ji) = hni ® f( f l~) 

= (g ® f)(:~ ®Z~)= (g ® f):(Z~). 

(2) Since 

= n-'{0*(z~) ,  ~ )  -- nk-'(z~,  ~ )  

the result follows. This completes the proof of the proposition. 
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Remark 3.2: Since {g}  forms a linear basis for k[(b)] and j3~ # 0, it follows 

from part (2) of the above proposition that for any l there exists j such that 

We now specialize: Let p and q be prime numbers satisfying p = 1 (rood q), and 

let m ~ Z v so that Iml = q- Let (b) he of order p, and (h) of order q2. From now 

on we shall assume, unless otherwise stated, that the field k contains primitive 

pth and q2th roots of unity. As above let O(b) = h.  b = bm. Denote by Aqp the 

resulting Hopf algebra. Note that (h q} is the unique subgroup of (h) of order q, 

and that hq acts trivially, hence k[(hq)] C Z(Aqv). Moreover, by Proposition 3.1, 

Aqp is self-dual. Using the linear basis 

{ ~ 1 0 < i _ < q - 1 ,  0 < _ j _ < ( p - 1 ) / q }  

of A and (19) we have that 

(21) (~ × h')(bi × h ~) = ¢ ~ ( g b i  × h ~÷~) 

and 
q--1 

(22) ~ ( ~  × h ~1 = ~ ~_~ × ha ~÷~ ® g × h'. 
t=O 

By (4) we have that 

(23) ~(g × h ~) = , -~'(~(g) × h-q'-~). 

In the following proposition we describe the coradical of Aqp explicitly and 

show that Aqp is cosemisimple, and hence also semisimple. When there is no 

danger of ambiguity we identify h i with 1 x h i. 

PROPOSITION 3.3: Let A = Aqp and k be as before. Then: 

(1) G(A) = (h). 

(2) A has p - 1 simple subeoalgebras of dimension q2. 

(3) A is cosemisimple and semisimple. 

Proof." By (21) and (22), (h) is a subgroup of G(A). Thus, q2 divides [G(A)I. 

Since A is not cocommutative (see (22)), A # k[G(A)] and thus IG(A)] < pq2, 

but tG(A)I divides d imA = pq2 thus ]G(A)I = q2 and hence G(A) = (h). 

Since by (22), A ( g  × 1) = ~r+s=i(~ × has ® ~ × 1), it follows that I = 

spk{~ × 110 _< i _< q -  1} is a l e f t  coideal of A of dimension q. We show 



250 S. GELAKI Isr. J. Math. 

that  I is a simple left coideal of A by showing it is a simple right A*-module. 

q-1 1) C I, and suppose that al ~ 0 for some Indeed, let 0 ¢ a -- ~--]~i=0 a~(~ × 

I. Let Pt " * = (~- t )  E k[(b)]* for any 0 _< t < q -  1. Then, for any such t, 

a (Pt x (hqt) *) q-1 -- ~ i=o  ai ~qs-~(Pt,~_s>((hqt)*,hqS)b~ x 1 = az(~ x 1), and 

hence I is a simple right A*-module. 

By [L, page 354], since I is a simple left A-coideal, Ako = L( I )  = 

spk{b ~ x hqJlo ~_ i , j  <_ q - 1} for 1 < k < (p - 1)/q is a simple sub-coalgebra of 

A, of dimension q2 for all k. Now, set A~ =- sPk{b k × hqJ+nlO < i , j  <_ q - 1} for 

1 < k < ( p - 1 ) / q  and 0 < n < q-1.  Since A~ = Ako hn, h n E G(A) and multiplica- 

tion by a grouplike element is an isomorphism of coalgebras, it follows that Akn is 

a simple sub-coalgebra of A for all k and n. Since dim Akn = q2, and since there are 

q ( p -  1)/q = p -  1 such simple sub-coalgebras, their dimensions sum to ( p -  1)q 2. 

Finally, since there are q2 grouplike elements and q2 + ( p _  1)q2 __ pq2 = dim A, 

the result follows. | 

Remark 3.4: Note that the elements of A~ commute if and only if n = 0. 

In the following proposition we describe the sub-Hopf algebras of Aqp. 

PROPOSITION 3.5: Let A = Aqp and k be as before. Then the non-trivial 

sub-Hopf algebras of A are k[(hq>], k[(h>] and 

B = S p k { b  i x h q j [ O < i < p - 1 ,  O < _ j < q - 1 }  

of dimensions q, q2 and pq, respectively. 

Proof: Let B be a non-trivial sub-Hopf algebra of A. By [NZ], d imB = p, q, 

q2 or pq. If dim B -- p then B = k[G(B)] by [Z]. But, by Proposition 3.3, 

[G(B)[ must divide IG(A)[ -- q2 and hence this is impossible. If d imB -- q 

then B = k[G(B)] by [Z], and the only possibility is B =- k[(hq)]. Suppose 

dim B -- q2. By Proposition 3.3, B is cosemisimple and the dimension of the 

simple sub-coalgebras is q2 or 1. Since B contains 1, a grouplike element, it 

follows that  S = k[(h)]. Suppose now that  d imB = pq, then G(B)  = k[(hq)]. In 

particular this implies that  the image of the restriction to B, of the projection 

~r: A -~ k[(h)], is a sub-Hopf algebra of k[(h)] containing k[(hq)]. Therefore, 

Im(lrlB ) = k[(hq)] or k[(h)]. Dualizing implies that [Im(~rls)]* is embedded in S*, 

hence dim[Im(Trls)]* divides pq, hence must be q and hence Im(lrts ) = k[(hq)]. 

Thus, we have the following sequence of maps: k[(hq)] -~ B -~ k[(hq)]. By JR1, 
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Theorem 3], B -- B '  x k[(hq)] for some B'. Since k[<hql] acts on B'  via adi [R1, 

3.4], and k[(hq)] C Z(A), it follows that the action is trivial. But then it follows 

from [R1, 2.8(a)] that  B'  is a sub-Hopf algebra of A of dimension p. Therefore 

by [Z], B' ~- k[Zp], hence commutative. This implies that  B is commutative. 

Therefore B is a direct sum of q 1-dimensional and (p - 1)/q q2-dimensional 

commutative simple sub-coalgebras of A. Using Proposition 3.3 and Remark 3.4 

r~(p-1)/q ~k~ This completes the proof of the we conclude that B = k[(hq)] @ ~qTk=l f'0Y" 

proposition. | 

Let us single out some of the properties proved above. 

Remark 3.6: Let B be the unique pq-dimensional sub-Hopf algebra described 

in Proposition 3.5. Then B = k[(b)] x k[(hq)], with the trivial action, and the 

coaction induced by p. Thus, as an algebra, B = k[(b) x (hq)] is the group algebra 

of the commutative group (b) x (hq). Now, let f~ and a be so that  k[(b)]* = k[(f~)] 

and k[(hq)] * = k[(a)]. We wish to show that  B* = k[(fl) )4 (a)] is the group 

algebra, as a Hopf algebra, of the semidirect product group of (f~) and (a), where 

a . / ~  = f~m. Indeed, by 3.1, B* = k[(f~)] x k[(a)] with the trivial coaction, and 

action determined by a . /~  = 0*(fl) = tim. In particular, B* = k[(/~)] ® k[(a)] as 

a coalgebra, and B* -- k[(/3) )4 <a)] as an algebra. Since any element of (/?))~ (a> 

is a grouplike element we are done. 

It is this B that enables us to prove the following lemma which is basic in 

our analysis of quasitriangularity of A = Aqp. Among the rest we prove quasi- 

triangularity by exhibiting an isomorphism of A and A c°p, which by 3.1 is an iso- 

morphism of A and A *c°p, and continue by showing that then (QT.5)' is satisfied. 

All this is possible if and only if q = 2. 

LEMMA 3.7: Let A -- Aap and k be as before. Then: 

r.~ A c ° P  i s  a n  (1) A = A c°p if  and only if  q = 2. Furthermore, i f  f:  A2p ~ "2p 

isomorphism of Hopf algebras, then f is determined by 

f (h)  = h 2i+3 and f (b  × 1) = s(b ~ x 1) 

for someO < i < 1 and 1 < r < p -  1. 

(2) Let f be an automorphism of A. Then f is determined by 

f (h)  = h qi+l and f (b  × l) = b r x l  

for some 0 < i < q - 1 and 1 < r < p - 1. Furthermore, Autsopf(A) 

Zq × Zfl, . 
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Proof." We first determine AutHopf(B) by determining Aut(k[(f~)] x k[((~)]). The 

latter is determined by the automorphisms of the semidirect product group of (~) 

and (a). These automorphisms can be determined as follows: Let G = (j3))4 (a). 

Then by Sylow's Theorem, (f~) is the unique normal Sylow p-subgroup of G. Set 

Gj ---- {]~ j(mi-1) N o~il0 __~ i <~ q -- 1} for 0 <_ j <__ p -- 1. Then each Gj is a Sylow 

q-subgroup of G, and by Sylow's Theorem, {Gjl0 _< j _< p - 1} is the set of all 

Sylow q-subgroups of G. Let ¢ be an automorphism of G. Since ¢((f~)) = (f~} and 

¢(Gj) = Gj, it is not hard to verify that  

for some 1 < i <_ q -  1, 0 < j <_ p -  1 and 1 < r < p -  1. 

(1)4 a) (~  )4 1)(1 )~ a) -1 = f~m n 1 it follows that  i = 1 and hence that  

¢(Z~ ~ a k) = / ~ l + J ( ' ~ k - 1 )  ~ a k 

Since 

for some 0 <_ j <_ p - 1 and 1 < r < p - 1. Finally, it is not hard to verify that  

¢ described in the last equality determines a well defined automorphism, hence 

determines an automorphism of k[G] = B*. Dualizing yields an automorphism 

¢*: B -+ B which is determined by 

q-I ) 
(24) ¢ * ( l x h  q ) = l x h  q and ¢ * ( b x l ) = b  r x  (~--0°tv'jhq" 

where c~.,j = (~,b)-J(l~J,b~), 0 _< j _< p -  1 and 1 < r < p -  1. Since (a, hq) = rl, 

the second equality follows by 

(¢*(b x 1),/3 t x c~ k) = (b x 1,fff/+j(mk-1) x ~k) 

= (b, f] rl+j('nk-D ) 

= (b,  

= (br,131)(b,}3Jmk)(b, t3-J) 

= (b~,l~Z)(b,O*k(~J)}(b,~ - j )  

= 
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q - 1  

: (b~,flt)(Ok(~-~(A -~ --~ t ) .  b),flJ)(b, t3) - j  
v--O 

q--1 

= (b ~ , fit)( Z rt "k b 1, f~J)(b, f~) - j  
v=O 

q--1 

= (b ~, ~z) Z (hq" ~k)(b 1 ' ~j)(b, ~) - j  
v----O 

q--1 

= (b r,/~t) ( Z  (b~, ~J)(b, ~} -Jh  qv , (~k) 
v--~O 

q--1 

---~ (b r x ( Z  Olv,jhqv),~l x Olk). 
v=O 

(1) Suppose now that  f :  A ~ A c°p is an isomorphism of Hopf algebras. Then, 

s o f: A --~ A °p is an isomorphism of Hopf algebras, and since B is the unique 

(commutative) sub-Hopf algebra of A and A °p, of dimension pq, (s o f ) lB is an 

automorphism of B. Therefore, since (s o f ) ( h  q) = h a we have that (s o f ) (h)  : 

h qi+l for some 0 < i < q - l ,  and since s 2 : I it follows from (24) that f = so(sol )  

must be of the form 

(qi ) (25) f (1  x h) = 1 x h -qi-1 and f (b  x 1) = s b r x O~v,jh qv 
v : 0  

t 

where o~v,j = (j3, b)-J(j3J,bl), 0 < j < p -  1, 1 < r < p -  1 and 0 < i < q -  1. 

Since on one hand 

] [ ( l x h ) ( b x l ) ] = f ( h . b x h )  

= f (b  m x h) = f (b  x 1)'~f(1 x h) 
/q -1  \ ~ \  )(ix q, 1) 

/q -1  \ m \  

= S brn2r x hqi+l Iv~=O~V,jhqv) ) 
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and on the other hand 

f (1  x h)f(b x 1) = (1 x h-qi-1)s b r x ~ v , j h  qv 

v=O / 

= 8 b r x h qi+l o%,jh qv 

it follows that  if f is an isomorphism then 

q--1 q--1 

(26) - m 2 ,  ", i V "  ~qv~m 

v--0 v~0 

for all 0 < i < q -  1. We show that  (a/,  ~ - - ~ q - - 1  .haY\  ([~h3 Z..~v=O~V,3 I = ,r~,~, j ( m ' - i )  for all 

0 _< i < q - 1. This will imply that  if f is an isomorphism then j = 0, and 

b ~2~ = b ~, and hence that  rn 2 = l (modq) .  Since q is the order of m in Zp it will 

follow that  q = 2. Indeed, by (14) 

q--1 q--1 

(~i,  ~-:~ ~v,jhqv> =- ~..~"~ (~v,j~iv 

v=O v=O 

q -1  

v----O 
q-1  

~'~ (~, b) - j  (]~J, Z lily °v~tl" 
v=o 

q-1 
= (~, b)-5 (~5, o ~ ( ~  bit) 

v=O 
q--1 

= (~, b)-5(o*,(~51, ~ ( , x  -~ - ,  t ) .  b) 
v~-O 

= (f~, b)-5 (~Sm', b) 

= (~, b)~(m'-i). 

Thus,  (26) is equivalent to (~, b ) ~ J ( ~ - l ) b ~ r  = (/~, b)5(m~-l)b ~ and the result 

follows. 

Conversely, if q = 2 then, by the above, if 

1 1 

(E ~o,sh~V) ''= ~ ~o,5 h~, 
v-~O v.~O 
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then f ,  given in (25), is an isomorphism. Now, i f j  = 0, then av,0 = e(b 1) = ~ ,o ,  
1 1 and hence (~-~.=o °iv, 0'~l~2v~rnj = 1 = ~-]~=o av,o h2È" Therefore, we conclude that  

4c°v determined by the map f :  A2p -+ ~'2v 

f ( h )  = h 2i+3 and f ( b  x 1) = s(b ~ x 1) 

is an isomorphism of Hopf algebras for all 1 < r < p - 1 and 0 < i < 1. This 

completes the proof of the lemma. 

(2) Let f :  A --+ A be an automorphism of A. Then using similar arguments to 

those used in the proof of part (1) yields that f must be of the form 

q--1 

f (1  x h) = 1 x h qi+l and f ( b  x 1) -- b ~ x ~ a , h h  qv 
v--~0 

w h e r e a , , j  = (fl, b ) - J ( f l J , b ~ ) , 0 < j _ < p - 1 ,  l < r  < p - 1  a n d 0 < i < q - 1 .  

Since f ( (1  x h)(b x 1)) = f (1  x h ) f ( b  x 1) it follows, as before, that  j = 0, and 

hence that  f must be determined by 

f ( l x h ) = l x h  qi+l and f ( b x  1 ) = b  ~x  1 

where 1 < r < p - 1 and 0 < i < q - 1. It is not hard to verify that f described 

in the last equality determines an automorphism of A. Denote such f by fi,r. 

Since f i ,r  o f j , t  = fi+j,rt where the sum i + j is mod q and the multiplication r t  

is modp,  the result follows. | 

Using Lemma 3.7 we determine first when A2p is minimal quasitriangular: 

THEOREM 3.8: Suppose  that  the f idd  k contains pr imi t ive  4th and p th  roots of  

uni ty  and let A = A2p. Then the maps f ,  f ' :  A *c°p --+ A given by f ( ~ k  x ~J) = 

b~ k x h 2i+j and f ' ( j3  k x 7J) = b~ k x h 2i- j  de termine two min imal  quasitriangular 

s t ructures  on A for any 1 < r < p - 1. 

Proof: We first show that  f and f '  are Hopf algebra maps. Since A is isomorphic 

to A* by Proposition 3.1, it is sufficient to show that  the maps b~ x h j ~-~ b[ k x 

h 2i+j and b k x M ~ b~ k x h 2i - j  are Hopf algebra maps. Indeed, the first map 

is obtained from (25) after substituting i = 1, while the second one is obtained 

from (25) after substituting i = 0. It remains to check that f and f '  satisfy 

(QT.5)'.  Note that  since q 2, ~0 = 1 • = ~(b J + b - j )  and fl~ = -~(~J + ~-J )  for 

O <  j < ( p - 1 ) / 2 ,  and _ ~(bJ_b-J)l a n d f l { = ½ 0 3 J - ~ - J ) f o r l < j < ( p - 1 ) / 2 .  
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Since A" and A are generated as algebras by G = {/~g x ¢,/~{ x ¢, ~ x ~f} and 

G' = { ~  x 1 , ~  × 1, 1 x h} respectively, it is sufficient to check (QT.5)' for 

p • G and a • Gq We check it, for example, for f, p = /3  j x ¢ and a = b~ x 1. 

By (22), A(jg~ x ¢) = 13~ x ¢®/3o # x ~ + f l g  x 72®13~ x ¢ and A(b~ x 1) = 

b~ n x 1 ® ~ x 1 + ~ x h2® ~ x 1. Therefore, using Proposition 3.1(2) we compute 

E (P(1), a(2))ao) f (P(2)) 

= (/31 ,j blm}(b~ x h2)f(/3o j x ~) + {/~J, b~)(b~ x 1)f(/3~ x ~) 

j m m "r h 2 h 2 = (/~1, bl }bo ~o x -4- (/~g, b'~}br~ " x 

and, on the other hand, 

E ( P ( 2 ) ,  a(1)}f(P(1))a(2) 

= {~Jo,b'~)f(~ x E)(b~ x 1 ) +  (~,b~)f(13~ x c~2)(b~ x 1) 

j m m "r h 2 = ( ~ 0 , b 0 ) b l  ~1 x -4- ( ~ J , b r ~ ) b ~ b ~  r × h 2. 

Finally, since f is an isomorphism, Im(f)  = A and hence f determines a minimal 

quasitriangular structure on A. This completes the proof of the theorem. | 

Having established when A = Aqp is minimal quasitriangular we now go on to 

study when (A, R) is quasitriangular but not minimal. This would imply that 

AR is a proper sub-Hopf algebra of A. By Proposition 3.5 and the fact that B 

is commutative but not cocommutative, the only possibility for AR is to be a 

sub-nopf  algebra of k[G(A)], hence R e k[G(A)] ® k[G(A)]. We show: 

LEMMA 3.9: Let A = Aqp and k be as before. Then, there exists 

R • k[G(A)] ® k[G(A)] such that (A, R) is quasitriangular if and only if q = 2. 

Moreover, A2p admits exactly two such structures none of which is triangular. 

Proof: Assume such R exists and let f = fR. By Proposition 3.3, Im(f)  is a sub- 

Hopf algebra of k[(h)], and hence R • k[(h)] ® k[(h)]. Let w • k be a primitive 

q2th root of unity. By [R2, page 219], there exists 0 < n < q2_ 1 so that  R = Rn, 

where 
q 2-1  ~ - l k  hnk) 

P ~ - -  E - - ~ -  (1 x ht) @ ( l x  " 
l,k=O 

Observe that  f~ = fR.:  A*C°v -~ A is given by fn(~{ × 7 k) = ~(~)(1 x hnk). 

We now show that fn satisfies (QT.5)' if and only if q = 2 and n = 1, 3. Let 
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p = t  r e x 7  j a n d a = b ~ x h  r. Then,  on one hand 

Z (P(1)' a(2))a(1)fn (P(2)) 

q--1 

U~Y~O 

q--1 
V~IF4 rn b z \/~ h\rJtb ~ = , x 

v=0 

= (fl~, b~)(7, h) rj (b~-i x h qi+r+nj)e(t~) 

and on the  other  hand  

~-'~ (P(2), a(1))fn(P(1))a(2) 
q--1 

= ~ (Him, b~_v)(~/j, hq.+r)(1 x hnqU+~J)(b~ × hrle(tim_~) 
U~v~O 

q--1 
m b I " • " h)J(qv+r)(b  × 

v:O 

= (fly, b~)(7, h) j(qt-qi+r) (b~_i x h~qi+r+J~)s(j3g), j(t-i)n. 

Since (7, h) q = rl and e ( t ~ )  = 1, an equali ty holds if and only if 

(27) (tim, b~)hqi = (BY, b~}~ j(n+l)(t-i) hnqi 

for all i, m,  l and  t. By R e m a r k  3.2, there  exists l such tha t  ( t l  1, b~> 7~ 0. Thus,  if 

i = m = 1 then  (27) holds if and only if h q = ~lJ(n+l)(t-1)h nq. Since the order of 

h is q2, q = nq(modq2), hence n = n'q + 1 for some n ~, and thus since rlq = 1 we 

have 1 = ~1 j(n+l)(t-1) = ~12j(t-1) for all j ,  t. This  holds if and only if rl 2 = 1 and 

n = n'q -t- 1, i.e. if and only if q = 2 and n -- 1 or 3. I t  is not  hard  to verify t ha t  

if q = 2 and  n -- 1 or 3 then (27) holds for all i, m, l and t. This  completes  the  

proof  of the  lemma.  | 

COROLLARY 3.10: By Theorem 2.3, A2p is not minimal triangular, since its 

group of grouplike elements forms a cyclic group of order 4, and k[G( A2B)] ~ k[Z4] 

does not admit minimal triangular structures. Thus, A2p is not triangular by 

Theorem 3.8 and  L e m m a  3.9. 

We now summarize :  
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THEOREM 3.11: Let p and q be prime numbers satisfying p = l(modq), and 

let k be a field containing primitive pth and q2 th roots of unity. Then Aqp is a 

self-dual semisimple Hopf  algebra of dimension pq2, and Aqp is quasitriangular 

if  and only i f  q = 2. Furthermore, A2p admits exactly 2p - 2 minimal quasi- 

triangular structures and exactly two non-minimal quasitriangular structures 

with k[G(A2p)] as the corresponding minimal quasitriangular sub-Hopf algebra. 

Moreover, none of the above-mentioned quasitriangular structures is triangular. 

Proof." Let A = Aqp. Suppose (A, R) is quasitriangular, and set B = spk{R (1) } 

and H = sPk{R(2)}. Then, B and H are sub-Hopf algebras of A of the same 

dimension and B *c°p ~ H. By Proposition 3.5, B and H cannot have dimension 

pq, since the unique sub-Hopf algebra of this dimension is commutative but not 

cocommutative. Thus, either B = H = A or B, H C_ k[G(A)]. If B = H = A 

then, by Lemma 3.7, q = 2, and A2p admits exactly 210-2 minimal quasitriangular 

structures by Theorem 3.8. If B, H C_ k[G(A)] then q = 2 by Lemma 3.9, and 

(A2v, R1) and (A2p, R3) are the two non-minimal quasitriangular structures A2v 

admits. This completes the proof of the theorem. II 

We end this paper by constructing another family of pq2-dimensional 

biproducts. The method is the same as that of Aqp, but since we replace the 

cyclic group of order q2: L = (h), by a direct product of two cyclic groups of 

order q: M = (h) x (g), the situation changes dramatically. This can already be 

seen in Section 2; whilst M always admits minimal triangular structures (Exam- 

ple 2.5), L never does (Theorem 2.3).. 

Let p, q, m, (b), ~/be as before, but let h'g j • b k = b km~ , that is, g acts trivially 

on b. Let O(b) = h .  b, and form {g} as before. Then k[(b)] is a left k[(h) × (g)] 

comodule via g ~ gi ® 4 .  It is not hard to verify that  (k[(h) × (g)], k[(b)]) is an 

admissible pair and hence that  ¢4qv = k[(b)] × k[(h) × (g)] is a Hopf algebra with 

multiplication, comultiplication and antipode as follows: 

(2s) (4  × × hn'g ') × 

(29) 

and 

(30) 

q - 1  

t=0  

s (g  × hng m) = , - n ' ( s ( g )  × 
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Assume that  k contains primitive pth and qth roots of unity, and let /3 be a 

generator of k[(b)]* and a, ~/ be generators of k[(h) x (g)] such that  (a, h) = 

1, (a,g) -- ~?, (~/,g) = 1 and (% h) = ~?. Then, Aqp is self-dual via the map 

fli x aJ@ ~-~ b i x Mg k. The proof of that is similar to the proof of Proposition 

3.1. When there is no ambiguity we identify hig j with 1 x hig j. 

PROPOSITION 3.12: Let ¢4 = J~qp and k be as before. Then: 

(1) G(A)  = (h) x (g) (hence Aqp ~ Aqp as Hop[algebras). 

(2) A has p - 1 simple sub-coalgebras of dimension q2, namely Akn = 

spk{b k x gJ[0 ~ i , j  ~ q -  1}. 

(3) A is cosemisimple and semisimple. 

The proof of this proposition is similar to the proof of Proposition 3.3. 

PROPOSITION 3.13: Let A = tap  and k be as before. Then: 

(1) The non-trivial sub-Hop[algebras of A are: k[G] where G is a subgroup of 

G(A) ,  and B = spk{b i x gJ[0 _< i , j  <_ q -  1}. Moreover, B is the unique 

sub-Hop[ a/gebra of ,4  of dimension pq, and it is commutative. 

(2) A ~ A c°p for a11 p and q. Fhrthermore, ff f:  A --~ A c°p is an isomorphism 

of  Hop[ Mgebras, then f is determined by 

f( t~ x gZhk) = #i5(s(b[ (j)) x g-i+~k-lhk) ,  

where #id E k*, 1 < r( j )  < ( p -  1)/q and 0 <_ w ~ q -  1. 

(3) Let f :  A -+ A be an automorphism of Hop[algebras. Then f is determined 

by 
f (g)  = g, f ( h )  = gWh and f (b  x l) --- b r × l  

where 1 < r < p -  1 and 0 < w _< q - 1. Moreover, Autnopf(A) -~ Zq x Zp .  

Proof: (1) Let B be a non-trivial sub-Hop[ algebra of A. Using similar argu- 

ments to those used in the proof of Proposition 3.5 yields that  d imB -- q, q2 

or pq. Moreover, if dim B = q then B -- k[G] where G is a sub-group of (g) x 

(h) of order q, and if dimB = q2 then B = k[(g) x (h)]. Suppose now that  

d imB = pq. Then IG(B)[ = q. We first show that Im(~rlB ) = k[G(B)], where 

~r: A ~ k[G(A)] is the projection map. Clearly, k[G(B)] C Im(~rlB ) C_ k[G(A)]. 

Furthermore, dim Im(IrlB ) divides dim B. Since dim Im(IrlB ) = q or q2 it follows 

that  dimIm(~rlB ) = q, hence Im(TrlB ) = k[G(B)]. Now, by Proposition 3.12, B 

is cosemisimple and hence a direct sum of simple sub-coalgebras of A. We next 
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show that  B does not contain A k for n ~ 0. Assume otherwise, and let A k c B 

for some k and n ¢ 0. Then, b0 k × h '~ E /3, and hence by (20) and the above, 

7r(bko x h n) = ~(bko)h n = h n 6 G(13). Therefore A~ = `4~h -n  C B. In particular, 
q--1 k q-1 ~ = 0  b~ × 1 = ~ = 0  ()~-i ~ t ) .  ck × 1 = ck × 1 E B, and hence b r × 1 E t3 for all 

0 < r < p - 1 .  Thus, b ~ x l e B f o r a l 1 1 < k < ( p - 1 ) / q ,  a n d h e n c e b  k x h  n e B  

for all 1 < k < (p - 1)/q, and we conclude that  A k C B for all k and n. This 

implies tha t  B = ,4, hence not of dimension pq. Finally, since B contains only 

simple sub-coalgebras among {A~} and G(B), and d imB = pq, it follows tha t  

/3 --- k[(g}] @ ~aJk=0{fl%(p-1)/qAk]¢'~O] = sPk{ bi × gJl 0 - < i , j  _< q - 1}. In particular, /3 is 

commutat ive  and it is the unique sub-Hopf algebra of ,4 of dimension pq. Note 

that  B is isomorphic to the unique sub-Hopf algebra of Aqp of dimension pq, B.  

(2) Let f :  .,4 -+ A c°p be an isomorphism of Hopf algebras. Then, using similar 

arguments to those used in the proof of Proposition 3.7 yields that  f must be 

determined by 

q--1 

f (g )  g - l ,  f ( h )  g~°ht and f (b  x 1) = s(b r × E av,jgV = = ). 
v=O 

where c~.,j = (/3, b}-J(t3J,b~} for 0 < j < p -  1, 1 < r < p -  1, 0 < w < q -  1 and 

1 < l < q - 1. Since f[(1 x h)(b × 1)] = f(1 × h) f (b  x 1), we conclude, as in the 

proof of Proposit ion 3.7, that  

q--1 q--1 
m l + l r  i v m V 

V----0 v----0 

for all 0 < i < q - 1. Thus, l = 1 and j = 0, and we have 

(31) f (g )  = g-1, f ( h )  = gWh and f (b  x l)  = s(b r x l) .  

At this point it is not hard to verify that  f ,  given in (31), is indeed an isomorphism 
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of Hopf  algebras for any 0 < w < q - 1 and 1 < r _< p - 1. Finally, we compute  

f ( ~  x 1) = f[(A - i  ~ t ) . c j  x 1] 
q--1 q--1 

- ik m ~ 1) - ik , ~  1) 

k=O k=O 

q - 1  

s ( Z - i k  "~k 1) = 77 cj x 
k=O 

= s ( ( A - i - ~ t ) . c ; x l )  

= s((A - i  --~ t)-Ot(J)(c~(j)) x 1) 

= (A i, Ot(J))s((A - i  -~ t ) .  cro) x 1) 

= #i "sib ~(j) 1) #i,j(s(b~ (j)) x g- i )  ,3 ~ j  X = 

where cr(j) is the representat ive of the orbit  containing c~, and #i,j = (A i, 0 l(j)) = 
~iz(j). 

(3) Let  f be an au tomorphism of .A,. Then,  using similar arguments  to those 

used before yields tha t  f must  be determined by 

f (g)  = g, f (h)  = gWh and f (b  x 1 ) = b  ~ x l  

where 1 < r < p - 1 and 0 <_ w _< q - 1. It is not hard to verify tha t  f described 

in the last equat ion determines an automorphism of ,4. Denote  this map  by fw,~. 

Since f~,~ o f~,t = fw+u,rt the result follows. This concludes the proof  of the 

proposit ion.  I 

As a corollary we have the following: 

THEOREM 3.14: Suppose that the field k contains primitive pth and qth roots 

of unity and let A = J~qp. Then, ,4 is minimal quasitriangular if  and only i f  
A , c o p  q = 2. Furthermore, the map f~ : :  ~2p -~ A~ v given by f~,~(fl~ x ak7 t) = 

s ( ~  r) x g-i+wk-~hk determines a minimal quasitriangular, but not triangular, 

structures on ¢42p for any 0 < w < 1 and 1 < r < p - 1. 

Proof: By (31) and the  fact tha t  ,4 is self-dual, we need only to check whether  

the map f :  A *c°p ~ A given by 

f(/3~ × c~k7 l) = #~,j(s(b~ (j)) x g-i+wk-lhk) 
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satisfies (QT.5) ' .  Indeed, let p = ~J × ak7 t and a = b~ × gdht. Then,  on one 

hand 

E (PO), a(2))ao)f (P(2)) 
q--1 

{fli-x, htgd+u)f(~ X ak7 l) ~yt'~ ~ v - y  X 

x,y=O 

E [Nj bU\qakd+(l+x)t(hu ~ i - ~ ,  u , "  ~ - u  x h t  g a + Y ) # ~ , j ( s ( b ~ ( J ) )  x g-X+wk-Zhk) 
x+y=i 

---- E [Aj hu\'kd+(l+x)t+tx " (hu e(hr(J)~ gd+y-x+wk-lhk+t)  
\ l , . . i__X,~yl ,  I i~jk~v__yo\~ x j X 

x+y=i 
q--1 

= /_..~\~'y'~-'~/f~J bU\*~kd+lt+2t(i-Y)"'y/q ~-y,J~(bUv-ys(br(J)~ i -y]  X gd+2y-i+wk-lhk+t) 

y=0 

while on the other hand 

q--1 

-- E (~ '  b~ ~nk(d+u)+UHSJ - v - y , ' ,  - , ~ i - ~  x a a T z + ~ ) ( b ~  x htg d) 
x,y=O 

- - -  v - y / q  ~ - x , j ~  ~ i - x /  X x htg d) 
x+y=v 

= E (fl~, buv-y,-\'k(d+~)+u+ky'~-~,3'u( { )_bys.bi_~ .r(j) X gd- i+wk- lhk+t)  

x+y=v 
q-1 
~'~/f~j hu\~kdwlt+2k(v-x) ,, [h u e[hr(J)~ gd- i+wk-lhk+t) .  

Therefore, f satisfies (QT.5)'  if and only if 

q--1 
E / f 4 J  hu\~2t(i--Y),,. [h u ~(hr(J)~ \t-'y~ ~yl'l ~ _ y , j k ~ v _ y o ~ i _ y  ! X " ~y2Yj 

y=O 
q--1 

- ~ " l f d  h u \ ~ 2 k ( . - x ) ,  thu  o/hr(J)~ 1) -- ~..~\k"X, ° X I ' I  t~i_x,jk~v_xOk~i_xl X 
ac----O 

for all j ,  u, t, i, v and k. Clearly, if q = 2 then the above equality holds. If q ¢ 2, 

then  for i = v = y ¢ 0 we have that  if f satisfies (QT.5)'  

w ,  b }#oj(bos(b o ) × g:Y) = (~, b~)#od(bXs(bo 0)1 × 11. 
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Since, by Remark 3.2, for any j there exists u so that ( ~ ,  b~) ~ 0, #0,j ~ 0 and 

b~s(bo (~)) ~ O, we conclude that  f does not satisfy (QT.5)'. 

Finally, we show that  f = f~,r does not determine a triangular structure on 

.4 = .A2p. We first compute 

(Z( x u> = E (/~ x Olk'} #, s( R(2))R(1)> 

~(~_~ x a%l+t, s(R(:))>(~ x a% L, R0)> 
= x . % , + f l  × 

= × - % ' + ' ,  4 4 C )  × 

= ~( -1 )kt{#~_t ,  g~)(--1)k(l-~)  -~(~+~) 

= 

Recall that  #g = l (# j  + # - i )  and ~ r  = 7(/pl r + b-Jr). Hence, 

!(,., rj2 + w -rj2) where w is a primitive pth root of unity. Therefore, 

( # ~ x a k ~ t , u )  5 1,wr# = i,05( + w-rJ2)(-1) ~k. 

But if A were triangular u would be a central grouplike element (since s 2 -- id), 

and hence equals 1 x gS for some 0 < s < 1, and 

(#~ x ak7 z, 1 x gS) = 5i.o(_l)kS. 

( ~ w k  1 ( . ~ r j  2 ~ - r j  2 ) In particular we would have that  ~ - l j  ~ _  + = (-1)  ks for all k and 
1 r j  2 s, and hence that  ~ (w + w - r  j :)  - :1:1. We conclude the proof by showing that 

1 { . r j  2 .2 .2 • ~ w  + w-r~ ) ~ +1. Indeed, 1b"r#22~- + w-r3 ) = -t-1 if and only if w r~2 = -t-1 

for all j .  Since 3 _< p is prime we are done. | 

In the following theorem we prove that, unlike Aqp, ~4qp is quasitriangular for 

any p and q. Moreover, it is triangular with u = 1. 

THEOREM 3.15: Suppose that the field k contains primitive pth and qth roots 

of unity and let .4 = ~4qp .  Then the map f :  A *c°p -~ ,4 defined by f(#~ x ak7 t) = 

e(#9~)(1 x h-k g t) determines a triangular structure on ,4 with u -- 1. 

Proof'. It is not hard to verify that  f is a Hopf algebra map. We show that  .f 

satisfies (QT.5)'. Let a = b~ x hkg l and p = # ;  x at78. Then using (20), (28) 
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and (29) we compute 

E (p(1), a(2))a(1)f(p(2)) 
q--1 

~r^j-~+s b m hk gi-t+l)e(/5"~ ~)(1 x h-" g') = ~ ( ~  × ~ , ,_ ,  × h~g~)(b r × 
u,t=O 

q--1 

- -  i-t x hkgZ)e(/Sg)(b~ x hk-" g i-t+l+s) 
t----0 

n m r l + s k  n m h k - r g j + l + s ~  ) 

and, on the other hand, 

E (P(2), a(1))f (P(1))a(2) 
q--1 

= E (t3~ x ~rTS,b~_ t x hkgl+t)s(/5~_~)(1 X h-'gs+~)(b? × hkg l) 
u~t=O 

q--1 

i-t x hkgl+t)e(/~g)U-'t(b" ~ x hk-" g ~+'+j) 
t=O 

= (/~, b~)~l-r(i-J)+sk+r(l+i-J)e(~)(bm_j X hk-rg j+l+8) 

n m r l + s k  n m n )l"k-rgj+l+s~. = (~}, bj )~ ~(~o )(bi_j × 

Therefore f determines a quasitriangular structure on .4. We conclude the proof 

of the theorem by showing that u -- 1 (hence, in particular, the structure is 

triangular). Indeed, 

This concludes the proof of the theorem. 

E ( ( ~ J i  X o L r ~ s ) ( 1 ) , 8  0 f((j3~ × ~rTs)(2))) 
q--1 

t----0 
q--1 
~ ( ~ , C ,  × -':'+', ~(~(g): × h-'g')) 
t----0 
( ~ J x a r T " , l x h ' g  - ' )  

(J3 j, i), -''+'" = ( ~  × "'7", 1 x 1). 

We summarize: 
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THEOREM 3.16: Let p and q be prime numbers satisfying p = 1 (mod q), and 

let k be a field containing primitive pth and qth roots of unity. Then Aqp is a 

self-dual semisimple Hopf algebra of dimension pq2 which is not isomorphic to 

Aqv. Moreover, Aqp admits a non-minimal triangular structure, with h[G(Aqp)] 

as the corresponding minimal triangular sub-Hopf algebra, for any p and q. 

Furthermore, Aqp admits minimal quasitriangular structures if and only if q = 2, 

and A2p admits exactly 2p - 2 such structures none of which is triangular. 

Remark 3.17: The referee has pointed out that  the Hopf algebras Aqp and Aqp 

can be constructed in a unified way. Suppose the base field k contains enough 

roots of unity. Let U be a finite cyclic group which acts from the right on a 

Hopf algebra B (as Hopf algebra automorphisms). Identifying (kU)* = kU as 

usual, B is a left kU-comodule Hopf algebra via x ~ ~ u  cu ® x • u, where e~ 

is the dual basis of u (E U). Construct the smash coproduct K = B # k U  with 

respect to this action. Since kU is commutative, K is a Hopf algebra with the 

algebra structure of tensor product. Let V = (h) be a cyclic group of order n, 

which acts from the left on B so that  (v.  x ) .  u --- v .  (x.  u) for u E U, v E V and 

x E B. Let V act on kU trivially. Then V acts on the Hopf algebra K. Construct 

the crossed product A = K * V with respect to the action just defined and the 

relation (1 * h) ~ -- (uo * 1), a fixed element in U. Then, one sees easily that  

A(=  K ® kV) is a Hopf algebra with the coalgebra structure of tensor product. 

Suppose in addition that  B is a group Hopf algebra of a finite cyclic group G, 

U = V (= (h)) and the left action and the right action of U (= V) on B coincide. 

Then it is easy to prove that  A is self-dual (cf. Proposition 3.1). 

In particular, let G = (b) be a cyclic group of order p, n = q and h.b = b m = b.h, 

where p, q and m are as above. Ifuo = h, then A = Aqv. If u0 -- 1, then A = Aqp. 
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